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Abstract
Objective To examine the associations between urinary antibiotics from various sources and depression in the elderly using the
biomonitoring method.
Methods In the current study, we investigated 990 elderly individuals (≥ 60 years old) from a community-based elderly cohort in
West Anhui, China. The participants were interviewed by the Geriatric Depression Scale and self-developed questionnaires. A total
of 45 antibiotics belonging to nine categories were screened in urine samples by the developed liquid chromatography electrospray
tandem mass spectrometry method. Creatinine-corrected concentrations of antibiotics in urines were used to assess their exposure.
Logistic regression analysis was employed to test the relationships between exposure to antibiotics and depression.
Results Compared to the control group, the multinomial logistic regression analyses showed the elderly exposed to higher
concentrations of azithromycin (OR = 1.81, 95% CI: 1.09–3.00) and sulfaclozine (OR = 1.54, 95% CI: 1.05–2.28) had increased
risks of depression, respectively. After categorizing the detected antibiotics, tetracyclines (OR = 1.48, 95% CI: 1.02–2.16) and
veterinary antibiotics (VAs) (OR = 1.53, 95% CI: 1.06–2.20) were positively correlated with increased risks of depression. After
stratified by sex, the VAs (OR = 2.04, 95% CI: 1.13–3.71) at higher concentrations were associated with elevated risks of
depression in males, while the associations between depression and antibiotic exposures were observed in tetracyclines (OR =
1.74, 95% CI: 1.04–2.85) and all antibiotics (OR = 2.24, 95% CI: 1.01–2.94) at higher levels in females, respectively. Notably,
after the stratification by age, the significant associations were mainly present in the subjects under the age of 70.
Conclusions Our findings reveal that azithromycin, sulfaclozine, tetracyclines, and the VAs were significantly associated with
elevated risks of depression in the elderly. Importantly, sex- and age-specific differences were observed in the associations
between antibiotic exposures and depression.
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Introduction

With the increase in the aging population in many countries in
recent years, depression in older adults has become a global
public health challenge. The prevalence of depression among
older adults in China increased from 32 to 37% between 2008
and 2015 (Wang and Tian 2018). The continual annual in-
crease in the incidence of depression not only imposes an
increasingly heavy burden on healthcare services but also is
a potential risk factor for disability (Yang et al. 2020).
Although the etiology of depression remains poorly under-
stood, the gut microbiota is recognized for playing a central
role in depression in both animals and humans (Guida et al.
2018; Wang et al. 2020). Antibiotic residues, emerging con-
taminants in a class of well-known disruptors of gut microbi-
ota function, have also attracted growing attention for their
effects on human mental health, such as the pathogenesis of
depression through the gut–brain axis (Hao et al. 2020).
Almost 80 types of antibiotics and their active metabolites
have been detected in food and drinking water, confirming
that antibiotic residues can be ingested, potentially contribut-
ing to mental health risks (Feng et al. 2020; Kang et al. 2018;
Schutzius et al. 2019).

In the past several years, biomonitoring studies have found
that China’s general population is widely exposed to
multiclass antibiotics. In Shanghai, more than 20 types of
antibiotics were found in children’s urine, with an overall
detection frequency of 79.6% (Wang et al. 2016). Another
study reported the detection of nine types of VAs in 77.4%
of preschool children in Hong Kong (Li et al. 2017). In addi-
tion, 18 types of antibiotics were detected in the urine of 822
adults in China between the ages of 21 and 75 years, with
detection frequencies for individual compounds ranging be-
tween 0.1 and 15.2% (Wang et al. 2018b). Subsequent studies
have provided compelling evidence that antibiotic exposure
poses risks to human mental health, including by increasing
the risk of Alzheimer disease (Abrams et al. 2019; Dutta et al.
2019), and depressive disorders (Lurie et al. 2015). Notably, a
study conducted in eastern China reported that 7.2% of the
general adult population had a health risk associated with gut
microbiota dysbiosis under antibiotic challenge (Wang et al.
2018b). A nested case–control study based on patient records
from a medical database demonstrated an association between
antibiotic exposure and depression risk. The study further in-
dicated that therapy with a single antibiotic, such as penicillin
or quinolones, can increase the risk of depression (Lurie et al.
2015). A similar finding was reported by a study on
fluoroquinolones: 93 of 94 participants who took
fluoroquinolones reported psychiatric events, including de-
pression (62%), insomnia (48%), and cognitive impairment
(33%) (Kaur et al. 2016). Conclusions of epidemiological
studies on the relationship between antibiotic exposure and
depression have also been inconsistent, and even conflicting.

A prospective study demonstrated a link between antibiotic
exposure and postpartum depression in 124 mothers during
and after pregnancy. However, the link between antibiotic
exposure and postpartum depression was not significant at 3
or 6 months postpartum, indicating that the clinical use of
antibiotics is not necessarily associated with depression
(Murphy et al. 2018). Additional multisample and prospective
cohort studies must examine the linkages between the onset
and duration of antibiotic exposure and the risk of depressive
symptoms or development of depression.

Experimental studies have demonstrated that antibiotic ex-
posure can induce depressive disorders in mammals through
disruption of gut homeostasis. In male mice, long-term expo-
sure to a mixture of ampicillin, streptomycin, and clindamycin
altered their gut microbiota composition. Concentration levels
of Lachnospiraceae were significantly associated with
depression-like behavior in these mice (Guida et al. 2018).
In another study, a considerable increase in depression-like
behaviors were observed in rats exposed to ciprofloxacin for
approximately 2 weeks (Ilgin et al. 2015). Notably, our previ-
ous study revealed that perinatal exposure to sulfamonome-
thoxine induces persistent upregulation of the hippocampal
mammalian target of the rapamycin pathway related to gut–
brain axis dysfunction, potentially contributing to depression-
like behavior in male mice offspring (Zhang et al. 2017).

Several noteworthy studies have been published on the
relationship between antibiotic exposure and depression
among different populations. However, assessments of antibi-
otic exposure in previous population studies have been based
only on clinical utilization or self-medication. To the best of
our knowledge, no studies have reported an association be-
tween the body burden of antibiotic exposure and the risk of
depression in older adults. We hypothesized the existence of
an association between antibiotic exposure from various
sources, such as contaminated food or the environment, and
depression in older adults. We employed a biomonitoring ap-
proach to monitor the concentrations of multiple antibiotics in
the urine of 990 older adults in China.

Materials and methods

Study population

The baseline data were collected from our previous study, a
cohort study conducted in Lu’an City, Anhui, China, from
June to September 2016. The inclusion and exclusion criteria
were as follows: (1) aged 60 years and above, (2) had lived in
the area for at least 6 months prior to the survey, (3) did not
have mental illness that could affect normal communication,
(4) signed an informed consent and voluntarily participated
(Li et al. 2019). In brief, of the 1,080 participants initially
included in the present study, a small number of participants
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were excluded because of their lack of depression data or urine
samples. A total of 990 older adults between the ages of 60
and 92 years were enrolled. All participants provided written
informed consent. The study was approved by the Ethics
Committee of AnhuiMedical University (the ethical clearance
number for the population study: 20170284) and was conduct-
ed in accordance with the principles of the Declaration of
Helsinki (Anonymous 1997).

Antibiotic Selections

With reference to the usage amount or detection frequency of
antibiotics in animal-derived food (Chen et al. 2019), drinking
water (Li et al. 2017), or urine samples in previous studies
(Zhang et al. 2020; Zhu et al. 2020), 45 types of antibiotics
and their two metabolites (acetyl metabolite of sulfamonome-
thoxine and metabolite of florfenicol) were selected from nine
antibiotic categories—10 fluoroquinolones, 9 sulfonamides, 8
β-lactams, 7 macrolides, 4 tetracyclines, 3 phenicols, 2
quinoxalines, lincomycin, and 1 aminoglycoside. The antibi-
otics were grouped into four new categories according to their
use: human antibiotics (HAs), VAs, antibiotics preferred as
human antibiotics (PHAs), and antibiotics preferred as veter-
inary antibiotics (PVAs).

Antibiotic exposure assessment

The sample preparation and analytical process of the targeted
antibiotics were performed as described in our previous study
(Zhu et al. 2020). In brief, the urine samples were stored at −
80 °C for 12 h and kept frozen until analysis. Urinary creati-
nine level was measured at the local hospital after urine col-
lection. The selected antibiotics were identified through high-
performance liquid chromatography–tandem mass spectrom-
etry. All urine sample analyses were performed by the same
laboratory team. The matrix validation curve constructed for
each analyte in a concentration range of 0.5−200 ng/mL dem-
onstrated a good fit with correlation coefficients ranging from
0.990 to 0.999. The limits of detection (LODs) and limits of
quantity ranged from 0.03 to 2.15 ng/mL and from 0.11 to
6.02 ng/mL, respectively. The recovery rate of the targeted
antibiotic compounds ranged from 73.5 to 112.2%, and the
matrix effects of the targets in urine ranged from 57.5 to
123.7%.

Outcome variables

Depression assessment

The 30-item Geriatric Depression Scale is a self-report mea-
sure of depressive symptoms in older adults (Chan 1996).
Each item is a “yes” or “no” question. Scale items 1, 5, 7, 9,
15, 19, 21, 27, 29, and 30 are scored as 1 point for “no” and 0

for “yes.” The remaining 20 items are scored as 1 point for
“yes” and 0 for “no.” Thus, the total score ranges from 0 to 30
points. A score of ≥ 11 was considered to indicate depression.

The activities of daily living

Activities of daily living (ADL) are behaviors associated with
self-care, including functional mobility and eating. ADL
scores range from 0 to 100, with 60 as a cutoff value. A higher
score indicates a better ability to perform ADLs (Dong et al.
2018).

Mini-mental state examination

Cognitive functionwas evaluated using the Chinese version of
the Mini-Mental State Examination (MMSE; Katzman et al.
1988). The MMSE evaluates five items: orientation, registra-
tion, attention and calculation, recall, and language. Total
scores range from 0 to 30, with higher scores indicating better
cognitive function. Because education level has a considerable
effect on MMSE scores, cognitive impairment was evaluated
according to the optimal cutoff points of the MMSE for elder-
ly Chinese adults (Li et al. 2016).

Covariates

Data on sociodemographic and behavioral characteristics, in-
cluding age (60–70 years, > 70 years), sex, marital status
(widowed, non-widowed), education level (illiterate, primary
school, middle school, and above), and living status, were
obtained through face-to-face interviews. Health indices
consisted of six questions: currently a smoker (yes or no),
currently consume alcohol (yes or no), engage in regular phys-
ical exercise in the last 3 months (yes or no), history of chronic
diseases (yes or no), height (m), and body weight (kg). The
participants were divided into three groups according to body
mass index (BMI): underweight (BMI < 18.5 kg/m2), healthy
weight (BMI = 18.5–23.9 kg/m2), and overweight (BMI >
23.9 kg/m2) (Hou et al. 2013). Smoking was defined as
smoking at least three cigarettes a week over the past 6
months. Drinking was defined as drinking one glass of wine
or more in the past 30 days. Physical exercise was defined as
routine physical activity (e.g., jogging or hiking). History of
chronic diseases was defined as the self-report of diagnosis as
having chronic diseases such as hypertension, diabetes, chron-
ic obstructive pulmonary disease, coronary heart disease,
cancer/malignant tumor, or stroke.

Statistical analysis

The selected antibiotics were divided into six classes
(macrolides, β-lactams, sulfonamides, fluoroquinolones,
tetracyclines, and phenicols) according to their antibacterial
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mechanisms. Because of their low detection frequencies,
lincosamides and quinoxalines were excluded from the data
analysis. Creatinine-corrected concentrations (μg/g) were cal-
culated by dividing the urinary concentration (μg/L) of anti-
biotics by the urinary concentration of creatinine (g/L). In the
present study, participants with urinary concentrations below
the LODs were classified into the control group. Those with
LODs equal to or higher than the 50th percentile P50 were
classified into the low-concentration and high-concentration
group, respectively (Wang et al. 2016).

A chi-square test was performed to examine the differ-
ences between the participants’ demographic characteris-
tics. Univariate logistic regression analysis was performed
to identify differences in the prevalence of depression ac-
cording to sex, age, marital status, education level,
smoking, drinking, physical exercise, BMI, and history of
chronic diseases. Associations between exposure to antibi-
otics and depression were analyzed using multinomial lo-
gistic regression analysis. Binary logistic regression models
were used to examine the relationship between individual
antibiotics and between antibiotic classes (detection fre-
quency > 10%) and the risk of depression. Analyses strati-
fied by sex and age were conducted to test the relationships
between exposure to different antibiotic classes and depres-
sion. Demographic variables were considered in the model
to be confounding factors if their associations with depres-
sion were significant (p < 0.05). Model A was a crude mod-
el, and model B contained the confounders: sex, age, marital
status, guardian education level, previous occupation, liv-
ing alone or with others, drinking, physical exercise, dietary
structure, ADL score, cognitive impairment, and BMI. All
statistical analyses were performed using IBM SPSS
Statistics for Windows, version 26 (IBM Corp., Armonk,
NY, USA). A p value of <0.05 was considered to indicate
statistical significance.

Results

Detection frequencies and concentrations of
antibiotics

The distribution of detection frequencies and concentrations
of 34 detected antibiotics in the normal and depression groups
were illustrated in Table 1. Thirty-four antibiotics were ob-
served in 93.0% of the elderly. It is noteworthy that 12 anti-
biotics were found in more than 10% of urine samples. The
concentration of some antibiotics varied greatly in urines, with
the extreme value exceeding 10,000 ng/mL. Additionally,
through the rank sum test, the concentration levels of VAs,
PVAs, and all antibiotics were significantly higher in depres-
sion group than those in normal group (Table S1).

Characteristics of study population

As shown in Table S2, the females were more likely to suffer
from depression than the males. The elderly who were
widowed, living alone, or illiterate had higher risks for depres-
sion. Significant differences in depression prevalence were
also observed in the groups of ADL and cognitive impair-
ment. In addition, smoking, drinking, physical activity, diet
structure, and BMI were all influencing factors for depression.
Interestingly, we found that the level of antibiotic residues in
the elderly mainly engaged in physical activities was higher
than that in the elderly with mental activities.

Associations of exposure to antibiotics with the risk of
depression

Table 2 demonstrates the relationships between antibiotic ex-
posures and the risk of depression. In model A, multinomial
logistic regression indicated that the elderly exposed to higher
concentrations of sulfaclozine (OR = 1.50, 95% CI: 1.05–
2.14), oxytetracycline (OR = 1.80, 95% CI: 1.15–2.80), and
lower concentrations of florfenicol (OR = 1.55, 95%CI: 1.02–
2.34) were positively associated with the increased risks of
depression. For antibiotic categories by antibacterial mecha-
nism or usage, phenicols were associated with elevated risks
of depression with the corresponding OR of 1.59 (95% CI:
1.06–2.37) at lower concentrations. However, the elderly ex-
posed to HAs at lower concentrations with OR of 0.56 (95%
CI: 0.37–0.84) had a lower risk of depression. After adjusting
for potential confounders, some changes were discovered in
the significant association of antibiotic exposure with depres-
sion. In model B, azithromycin (OR = 1.81, 95% CI: 1.09–
3.00), sulfaclozine (OR = 1.54, 95% CI: 1.05–2.28), tetracy-
clines (OR = 1.48, 95% CI: 1.02–2.16), and VAs (OR = 1.53,
95% CI: 1.06–2.20) were associated with increased risks of
depression. Nevertheless, the significant associations of oxy-
tetracycline, florfenicol, phenicols, and HAs with depression
disappeared, separately.

Sex- and age- specific associations of exposure to
antibiotics with depression

Table 3 illustrates the relationships between antibiotic expo-
sure and depression after stratified by sex. In the males, only
exposure to higher levels of VAs (OR = 2.04, 95% CI: 1.13–
3.71) presented a higher risk of depression. While the associ-
ations between depression and antibiotic exposures were ob-
served in tetracyclines (OR = 1.74, 95%CI: 1.04–2.85) and all
antibiotics (OR = 2.24, 95% CI: 1.01–2.94) at higher levels in
the females, respectively. In addition, sulfaclozine (OR = 2.10,
95%CI: 1.15–3.82) was positively associated with depression
in the males, whereas azithromycin (OR = 2.25, 95% CI:
1.20–4.21) and norfloxacin (OR = 2.41, 95% CI: 1.01–5.78)
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were separately associated with depression in females (Fig
S1). Subsequently, a stratification analyses by age was also

performed. Notably, there were significant associations pri-
marily presented in the elderly under the age of 70. As shown

Table 1 Detection frequency and urinary concentration (ng/mL) of antibiotics in different categories of depression (n = 990)

Antibiotics Usage All (n = 990) Normal (n = 713) Depression (n = 277)

N (%)a N (%) Percentiles N (%) Percentiles

P95 P99 Maximum P95 P99 Maximum
Macrolidesb 282 (28.5) 210 (29.5) 2.37 25.24 4966.18 72 (26.0) 3.32 40.80 981.49
Azithromycin HA 180 (18.2) 131 (18.4) 0.23 6.71 431.88 49 (17.9) 0.28 40.80 981.49
Clarithromycin HA 27 (2.7) 25 (3.5) – 0.36 4.26 2 (0.7) – 0.02 0.20
Erythromycin PHA 85 (8.6) 63 (8.8) 1.20 15.45 4965.25 22 (7.9) 1.44 17.76 25.43
Roxithromycin HA 27 (2.7) 20 (2.8) – 0.67 1661.98 7 (2.5) – 0.21 0.59
β-Lactamsb 253 (25.6) 188 (26.4) 5.29 284.95 13520.02 65 (23.5) 8.62 757.10 10876.13
Cefaclor HA 3 (0.3) 2 (0.3) – – 1.81 1 (0.4) – – 9.60
Cefotaxime HA 8 (0.8) 4 (0.6) – – 23.31 4 (1.4) – 9.16 24.00
Penicillin V PHA 176 (17.8) 134 (18.8) 2.39 9.48 163.63 42 (15.2) 2.28 11.54 19.71
Amoxicillin PHA 77 (7.8) 56 (7.9) 1.02 284.79 13520.02 21 (7.6) 1.14 757.10 10876.13
Tetracyclinesb 440 (44.4) 307 (43.1) 7.21 510.91 29202.89 133 (48.0) 7.80 3364.96 30574.33
Oxytetracycline PVA 187 (18.9) 126 (17.7) 1.28 254.86 28988.58 61 (22.0) 2.40 3088.97 36108.85
Chlortetracycline PVA 77 (7.8) 57 (8.0) 0.98 9.26 36.32 20 (7.2) 0.98 11.35 906.36
Tetracycline PVA 193 (19.5) 132 (18.5) 2.11 15.67 1042.67 61 (22.0) 1.94 70.78 385.00
Doxycycline PVA 182 (18.4) 135 (18.9) 1.58 10.20 80.34 47 (17.0) 1.55 13.76 16.40
Fluoroquinolonesb 496 (50.1) 344 (48.2) 58.68 657.65 179829.84 152 (54.9) 66.59 6171.67 21856.36
Pefloxacin PVA 40 (4.0) 31 (4.3) – 7.02 342.50 9 (3.2) – 2.58 4.34
Danofloxacin VA 40 (4.0) 27 (3.8) – 19.78 158397.90 13 (4.7) – 18.13 32.09
Lomefloxacin PVA 14 (1.4) 8 (1.1) – 0.23 108.36 6 (2.2) – 0.80 3565.44
Sarafloxacin VA 16 (1.6) 14 (2.0) – 0.34 214.82 2 (0.7) – 0.08 0.41
Ofloxacin PVA 235 (23.7) 161 (22.6) 4.09 45.33 106.20 74 (26.7) 3.81 41.42 113.95
Levofloxacin HA 33 (3.3) 28 (3.9) – 157.50 179826.37 5 (1.8) – 127.58 5459.14
Enrofloxacin VA 103 (10.4) 75 (10.5) 0.63 7.52 13.81 28 (10.1) 0.83 8.97 22.43
Difloxacin PVA 7 (0.7) 6 (1.8) – – 13.00 1 (0.4) – – 6.37
Ciprofloxacin PVA 163 (16.5) 111 (15.6) 4.16 28.73 64.75 52 (18.8) 7.14 60.64 122.53
Norfloxacin PVA 118 (11.9) 78 (10.9) 3.88 112.65 62670.01 40 (14.4) 8.28 2486.58 21862.55
Sulfonamidesb 552 (55.8) 397 (55.7) 23.61 57.51 51770.05 155 (56.0) 33.82 3063.76 14301.41
Trimethoprimec PVA 201 (20.3) 152 (21.3) 1.76 7.68 29803.34 49 (17.7) 1.21 1108.19 10572.11
Sulfamethoxazole PVA 26 (2.6) 17 (2.4) – 3.30 21964.17 9 (3.2) – 913.33 8612.11
Sulfaclozine VA 351 (35.5) 244 (34.2) 17.87 50.64 680.56 107 (38.6) 27.29 98.56 190.06
Sulfamethazine VA 6 (0.6) 4 (0.6) – – 5.90 2 (0.7) – 0.20 1.72
Sulfadiazine PVA 28 (2.8) 17 (2.4) – 1.32 5.30 11 (4.0) – 4.48 120.19
Sulfachloropyridazine VA 45 (4.5) 33 (4.6) – 1.64 28.71 12 (4.3) – 5.30 8.77
Sulfamonomethoxined VA 65 (6.6) 51 (7.2) 1.05 6.50 68.61 14 (5.1) 0.16 3.32 17.07
Phenicolsb 247 (24.9) 168 (23.6) 7.28 88.09 1532.31 79 (28.5) 6.26 153.32 1811.49
Chloramhenicol 27 (2.7) 20 (2.8) 75.63 1532.31 7 (2.5) 135.32 1811.49
Thiamphenicol VA 2 (0.2) 2 (0.3) – – 203.85 – – –
Florfenicol HA 228 (23.0) 154 (21.6) 5.06 15.38 111.93 74 (26.7) 4.36 8.31 11.21
Lincosamidesb 36 (3.6) 26 (3.6) – 291.33 151.51 10 (3.6) – 107.41 1191.52
Lincomycin PVA 36 (3.6) 26 (3.6) – 291.33 194642.29 10 (3.6) – 107.41 1191.52
Quinoxalinesb 30 (3.0) 18 (2.5) 9.93 79.30 12 (4.3) 25.35 58.01
Cyadox VA 30 (3.0) 18 (2.5) – 9.93 79.30 12 (4.3) – 25.35 58.01
All antibioticse 921 (93.0) 660 (92.6) 4191.67 43312.28 194972.47 261 (94.2) 1296.72 5115.51 30587.75
HAs 271 (27.4) 206 (28.9) 27.32 644.15 179826.41 65 (23.5) 12.19 1164.11 5483.31
VAs 623 (62.9) 435 (61.0) 28.11 109.69 158437.71 188 (67.9) 33.72 98.56 190.06
PHAs 306 (30.9) 227 (31.8) 8.91 576.19 13520.02 79 (28.5) 296.96 17038.75 10876.13
PVAs 720 (72.7) 511 (71.7) 449.41 56156.57 194972.47 209 (75.5) 908.75 18032.84 30574.33

HAs, human antibiotics; VAs, veterinary antibiotics; PHAs, antibiotics preferred as HAs; PVAs, antibiotics preferred as VAs
a Positive detection (detection frequency, %)
b Sum of concentrations of antibiotics in corresponding category for individual
c Due to the similar antibacterial mechanisms, trimethoprim was included in the sulfonamides
d The urinary levels of sulfamonomethoxine and florfenicol were separately considered to be the sum of their prototypes and metabolites
(sulfamonomethoxine-N4-acetyl and florfenicol amine)
e Sum of concentrations of all antibiotics
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in Table 4, except for β-lactams (OR = 0.42, 95% CI: 0.19–
0.95), these classes of phenicols (OR = 1.99, 95% CI: 1.03–
3.82), VAs (OR = 1.80, 95% CI: 1.06–3.04), PVAs (OR =
1.82, 95% CI: 1.02–3.26) and all antibiotics (OR = 2.64, 95%
CI: 1.03–6.79) were positively related to with the increased
risk of depression in the elderly aged ≤ 70 years, respectively.
Furthermore, individual antibiotics, such as oxytetracycline
(OR = 2. 49, 95% CI: 1. 18–5.27), ciprofloxacin (OR = 2.16,
95% CI: 1.07–4.37) and florfenicol (OR = 2.18, 95% CI:
1.11–4.29) were separately positively associated with depres-
sion (Fig. S2).

Discussion

Our results suggest that the participants’ bodies incurred a
heavy antibiotic burden fromwidespread exposure to multiple
antibiotics (VAs and PVAs). In China, although biomonitor-
ing data indicate widespread antibiotic exposure among dif-
ferent populations, most studies have focused on children,
pregnant women or younger adults rather than older adults
(Wang et al. 2018b). Notably, the overall antibiotic detection
rate (93%) in the present study was much higher than that in
536 pregnant women from eastern China (41.6%) (Wang et al.

Table 2 Associations of
creatinine-adjusted urinary anti-
biotics with depression in the el-
derly by multinomial logistic re-
gression (less than LODs was
used as the control) (n = 990)

Antibiotics Model Aa Model Bb

Low High Low High

Individuals

Azithromycin 0.64 (0.37, 1.09)c 1.34 (0.85, 2.13) 0.88 (0.49, 1.58) 1.81 (1.09, 3.00)*

Sulfaclozine 0.96 (0.65, 1.34) 1.50 (1.05, 2.14)* 0.93 (0.61, 1.41) 1.54 (1.05, 2.28)*

Trimethoprim 0.78 (0.48, 1.26) 0.81 (0.50, 1.31) 0.88 (0.52, 1.51) 0.88 (0.52, 1.48)

Oxytetracycline 0.93 (0.57, 1.52) 1.80 (1.15, 2.80)* 0.94 (0.56, 1.59) 1.56 (0.96, 2.54)

Tetracycline 1.09 (0.69, 1.74) 1.41 (0.90, 2.21) 1.02 (0.61, 1.71) 1.37 (0.84, 2.25)

Doxycycline 0.80 (0.48, 1.33) 0.95 (0.59, 1.55) 0.93 (0.53, 1.62) 0.92 (0.53, 1.57)

Ofloxacin 1.36 (0.90, 2.06) 1.15 (0.75, 1.76) 1.09 (0.69, 1.71) 1.07 (0.67, 1.71)

Enrofloxacin 0.79 (0.41, 1.53) 1.14 (0.62, 2.09) 0.84 (0.41, 1.75) 1.04 (0.54, 2.00)

Ciprofloxacin 1.17 (0.72, 1.92) 1.34 (0.82, 2.18) 1.16 (0.67, 2.00) 1.55 (0.91, 2.63)

Norfloxacin 1.27 (0.72, 2.24) 1.48 (0.85, 2.58) 1.50 (0.81, 2.80) 1.27 (0.69, 2.35)

Penicillin V 0.63 (0.37, 1.09) 0.92 (0.56, 1.51) 0.90 (0.50, 1.61) 0.70 (0.41, 1.21)

Florfenicol 1.55 (1.02, 2.34)* 1.12 (0.73, 1.73) 1.47 (0.93, 2.32) 1.19 (0.74, 1.92)

Groups by antibacterial mechanism

Macrolides 0.78 (0.51, 1.19) 0.91 (0.60, 1.36) 1.15 (0.72, 1.82) 1.00 (0.64, 1.56)

β-Lactams 0.68 (0.43, 1.06) 1.06 (0.70, 1.60) 0.82 (0.50, 1.35) 0.87 (0.55, 1.35)

Sulfonamides 0.80 (0.56, 1.13) 1.25 (0.90, 1.74) 0.87 (0.59, 1.27) 1.22 (0.85, 1.74)

Tetracyclines 1.11 (0.78, 1.57) 1.34 (0.96, 1.89) 1.12 (0.76, 1.64) 1.48 (1.02, 2.16)*

Fluoroquinolones 1.28 (0.91, 1.80) 1.33 (0.95, 1.86) 1.22 (0.85, 1.77) 1.23 (0.85, 1.77)

Phenicols 1.59 (1.06, 2.37)* 1.04 (0.68, 1.59) 1.46 (0.94, 2.27) 1.01 (0.63, 1.61)

Groups by usage

HAs 0.56 (0.37, 0.84)* 0.81 (0.58, 1.15) 0.77 (0.49, 1.20) 0.81 (0.56, 1.18)

VAs 1.23 (0.87, 1.73) 1.48 (1.06, 2.07) 1.22 (0.84, 1.77) 1.53 (1.06, 2.20)*

PHAs 0.73 (0.48, 1.10) 0.99 (0.67, 1.46) 0.88 (0.56, 1.38) 0.84 (0.55, 1.29)

PVAs 1.08 (0.75, 1.55) 1.36 (0.95, 1.94) 1.19 (0.80, 1.77) 1.39 (0.95, 2.05)

All antibiotics 1.10 (0.63, 1.92) 1.45 (0.83, 2.51) 1.21 (0.66, 2.21) 1.57 (0.87, 2.85)

The bold, p < 0.05, indicates that the difference was statistically significant

LODs, less than limits of detection; HAs, human antibiotics; VAs, veterinary antibiotics; PHAs, antibiotics pre-
ferred as HAs; PVAs, antibiotics preferred as VAs

*0.001 ≤ p < 0.05; **p < 0.001
aModel A was the crude model
bModel B was adjusted for gender, age, marital status, educational level, previous occupation, living alone,
drinking, physical activity, dietary structure, ADL, cognitive impairment, and BMI
cOdds ratio (95% confidence interval)
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2017); 582 students in Shanghai (79.6%) (Wang et al. 2016);
31 preschool children in Hong Kong (77.4%) (Li et al. 2017);
and 107 healthy adults in Dalian (26.2%) (Liu et al. 2017).
The higher concentrations of antibiotic residues in the present
study may be related to older adults’ lower metabolic level,
bacterial susceptibility, and dietary structure, as past studies
have noted (An et al. 2018; Fraser et al. 2000; Zhang et al.
2020).

Urinary analysis indicated a positive association be-
tween depression and exposure to sulfaclozine, oxytetracy-
cline, or florfenicol. After the antibiotics were classified

according to their mechanism, a significant association
was observed between phenicols and depression; after they
were classified according to usage, a significant associa-
tion was observed between depression and HAs. However,
exposure to β-lactams was negatively associated with de-
pression. Regarding depression-related risk factors, we
found significant positive associations of depression with
exposure to azithromycin, sulfaclozine, tetracyclines, and
VAs. In general, exposure to antibiotics such as VAs
and PVAs was associated with an increased risk of
depression.

Table 3 Associations of
creatinine-adjusted urinary anti-
biotics with depression by multi-
nomial logistic regression in
males and female (less than LODs
was used as the control) (n = 990)

Antibiotics Model Aa Model Bb

Low High Low High

Males

Groups by antibacterial mechanism

Macrolides 0.96 (0.52, 1.77)c 0.95 (0.48, 1.91) 1.31 (0.66, 2.61) 1.10 (0.50, 2.40)

β-Lactams 0.71 (0.34, 1.48) 0.90 (0.45, 1.78) 0.88 (0.39, 1.98) 0.61 (0.28, 1.32)

Sulfonamides 0.71 (0.41, 1.24) 1.36 (0.82, 2.27) 0.70 (0.38, 1.29) 1.35 (0.77, 2.38)

Tetracyclines 1.66 (0.99, 2.78) 1.10 (0.63, 1.92) 1.60 (0.88, 2.90) 1.05 (0.56, 1.96)

Fluoroquinolones 1.34 (0.81, 2.23) 0.96 (0.55, 1.67) 1.43 (0.81, 2.53) 0.96 (0.51, 1.80)

Phenicols 1.74 (0.97, 3.12) 1.51 (0.87, 2.64) 1.85 (0.95, 3.61) 1.51 (0.29, 1.74)

Groups by usage

HAs 0.66 (0.35, 1.22) 0.64 (0.36, 1.15) 0.89 (0.44, 1.78) 0.53 (0.28, 1.02)

VAs 1.26 (0.73, 2.16) 1.73 (1.01, 2.97)* 1.26 (0.69, 2.31) 2.04 (1.13, 3.71)*

PHAs 0.61 (0.30, 1.22) 0.93 (0.50, 1.76) 0.70 (0.32, 1.51) 0.80 (0.40, 1.64)

PVAs 1.15 (0.65, 2.04) 1.12 (0.63, 1.98) 1.27 (0.67, 2.42) 1.10 (0.58, 2.07)

All antibiotics 0.59 (0.25, 1.39) 0.76 (0.33, 1.77) 0.77 (0.30, 1.94) 0.97 (0.39, 2.42)

Females

Groups by antibacterial mechanism

Macrolides 0.67 (0.38, 1.18) 0.83 (0.50, 1.37) 1.10 (0.58, 2.10) 0.97 (0.56, 1.69)

β-Lactams 0.63 (0.35, 1.13) 1.13 (0.67, 1.91) 0.77 (0.40, 1.45) 0.98 (0.56, 1.73)

Sulfonamides 0.94 (0.60, 1.48) 1.23 (0.80, 1.89) 0.97 (0.59, 1.60) 1.15 (0.72, 1.83)

Tetracyclines 0.80 (0.50, 1.30) 1.56 (1.00, 2.42)* 0.80 (0.47, 1.34) 1.74 (1.07, 2.85)*

Fluoroquinolones 1.25 (0.79, 1.96) 1.60 (1.04, 2.47)* 1.12 (0.68, 1.84) 1.34 (0.84, 2.14)

Phenicols 1.51 (0.87, 2.64) 1.17 (0.70, 1.96) 1.24 (0.68, 2.27) 1.16 (0.66, 2.04)

Groups by usage

HAs 0.48 (0.28. 0.83)** 0.90 (0.58, 1.39) 0.72 (0.40, 1.30) 0.96 (0.60, 1.55)

VAs 1.27 (0.81, 2.00) 1.34 (0.87, 2.07) 1.19 (0.73, 1.95) 1.30 (0.81, 2.08)

PHAs 0.78 (0.47, 1.31) 0.99 (0.61, 1.63) 0.99 (0.56, 1.76) 0.85 (0.50, 1.76)

PVAs 1.06 (0.67, 1.70) 1.64 (1.04, 2.58)* 1.11 (0.67, 1.84) 1.53 (0.94, 2.51)

All antibiotics 1.73 (0.82, 3.64) 2.28 (1.09, 4.76)* 1.73 (0.78, 3.85) 2.24 (1.01, 4.94)*

The bold, p < 0.05, indicates that the difference was statistically significant

LODs, less than limits of detection; HAs, human antibiotics; VAs, veterinary antibiotics; PHAs, antibiotics pre-
ferred as HAs; PVAs, antibiotics preferred as VAs

*0.001≤ p < 0.05; **p < 0.001
aModel A was the crude model
bModel B was adjusted for gender, age, marital status, educational level, previous occupation, living alone,
drinking, physical activity, dietary structure, ADL, cognitive impairment, and BMI
cOdds ratio (95% confidence interval)
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Exposure to individual antibiotics such as sulfaclozine and
azithromycin was associated with a slight increase in the risk
of depression. Compared with the control group, individuals
with a high level of exposure to sulfaclozine and azithromycin
had a 1.81- and 1.54-times greater likelihood of developing
depression, respectively. In one of our previous studies, we
discussed several pathways or routes by which older adults
may be exposed to antibiotics: clinical use, contaminated
animal–derived food and drinking water (Zhu et al. 2020).
Sulfaclozine, a sulfonamide, is generally used as a feed

additive in veterinary clinics and poultry farming or in the
treatment of poultry diseases. One study detected sulfon-
amides, including sulfaclozine, in urban sewage, vegetables
and animal-derived food. Some of these sulfonamides
exceeded standard limits in several foods (Tang et al. 2015).
Therefore, contaminated food or the environment may be the
main routes of exposure to sulfaclozine (a VA) in older adults.
In addition, Lurie et al. identified sulfonamide exposure as a
risk factor for depression (Lurie et al. 2015). Notably, our
previous animal study indicated that exposure to

Table 4 Associations of
creatinine-adjusted urinary anti-
biotics with depression by multi-
nomial logistic regression in ages
(less than LODs was used as the
control) (n = 990)

Antibiotics Model Aa Model Bb

Low High Low High

60–70 years

Groups by antibacterial mechanism

Macrolides 0.98 (0.53, 1.83)c 1.27 (0.72, 2.22) 1.50 (0.75, 2.99) 1.49 (0.81, 2.76)

β-Lactams 0.45 (0.21, 0.95)* 0.92 (0.50, 1.69) 0.42 (0.19, 0.95)* 0.85 (0.45, 1.62)

Sulfonamides 0.59 (0.35, 0.99)* 1.14 (0.71, 1.82) 0.66 (0.37, 1.16) 1.27 (0.76, 2.13)

Tetracyclines 1.07 (0.65, 1.76) 1.45 (0.86, 2.43) 1.17 (0.68, 2.03) 1.74 (0.99, 3.07)

Fluoroquinolones 1.35 (0.82, 2.23) 1.53 (0.94, 2.49) 1.28 (0.75, 2.20) 1.48 (0.88, 2.49)

Phenicols 2.08 (1.15, 3.74)* 0.96 (0.50, 1.83) 1.99 (1.03, 3.82)* 0.96 (0.48, 1.93)

Groups by usage

HAs 0.72 (0.41, 1.28) 0.55 (0.32,0.95)* 1.05 (0.56, 1.97) 0.61 (0.34, 1.10)

VAs 0.97 (0.59, 1.61) 1.52 (0.93, 2.46) 1.00 (0.58, 1.74) 1.80 (1.06, 3.04)*

PHAs 0.54 (0.28, 1.04) 0.96 (0.55, 1.66) 0.52 (0.25, 1.05) 0.86 (0.48, 1.56)

PVAs 1.30 (0.76, 2.20) 1.71 (1.00, 2.93)* 1.41 (0.79, 2.51) 1.82 (1.02, 3.26)*

All antibiotic 1.49 (0.62, 3.58) 2.04 (0.85, 4.87) 1.72 (0.67, 4.44) 2.64 (1.03, 6.79)*

> 70 years

Groups by antibacterial mechanism

Macrolides 0.65 (0.37, 1.14) 0.64 (0.35, 1.17) 0.95 (0.50, 1.81) 0.70 (0.37, 1.35)

β-lactams 0.91 (0.51, 1.62) 1.20 (0.68, 2.10) 1.31 (0.68, 2.56) 0.86 (0.46, 1.62)

Sulfonamides 1.03 (0.65, 1.65) 1.37 (0.87, 2.16) 1.21 (0.71, 2.07) 1.21 (0.73, 2.02)

Tetracyclines 1.14 (0.70, 1.87) 1.28 (0.81, 2.01) 1.13 (0.65, 1.96) 1.27 (0.76, 2.12)

Fluoroquinolones 1.22 (0.77, 1.93) 1.17 (0.73, 1.87) 1.13 (0.68, 1.90) 1.03 (0.60, 1.74)

Phenicols 1.27 (0.73, 2.21) 1.11 (0.63, 1.95) 1.18 (0.64, 2.19) 1.06 (0.56, 2.02)

Groups by usage

HAs 0.44 (0.24, 0.79)** 1.08 (0.69, 1.69) 0.58 (0.30, 1.10) 1.03 (0.62, 1.71)

VAs 1.50 (0.94, 2.41) 1.45 (0.91, 2.32) 1.50 (0.88, 2.55) 1.40 (0.83, 2.36)

PHAs 0.91 (0.53, 1.55) 1.02 (0.59, 1.76) 1.40 (0.76, 2.59) 0.83 (0.45, 1.54)

PVAs 0.92 (0.56, 1.52) 1.13 (0.71, 1.81) 1.11 (0.63, 1.94) 1.13 (0.67, 1.92)

All antibiotic 0.88 (0.42, 1.82) 1.12 (0.54, 2.29) 0.91 (0.40, 2.06) 1.07 (0.50, 2.39)

The bold, p < 0.05, indicates that the difference was statistically significant

LODs, less than limits of detection; HAs, human antibiotics; VAs, veterinary antibiotics; PHAs, antibiotics pre-
ferred as HAs; PVAs, antibiotics preferred as VAs

*0.001≤ p < 0.05; ** p < 0.001
aModel A was the crude model
bModel B was adjusted for gender, age, marital status, educational level, previous occupation, living alone,
drinking, physical activity, dietary structure, ADL, cognitive impairment, and BMI
cOdds ratio (95% confidence interval)
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sulfamonomethoxine during pregnancy increased anxiety-
related and depression-like behavior in mice offspring
(Zhang et al. 2017). These findings indirectly support our
results. Notably, as an HA, azithromycin may primarily accu-
mulate in the body through medical use, and has a relatively
higher detection rate in macrolides (1.3 to 27.9%) (Wang et al.
2018a; Wang et al. 2016; Wang et al. 2018b). A study report-
ed that azithromycin was the most commonly used in
macrolides in the primary, secondary and tertiary care hospi-
tals of 28 provinces in China (Liu et al. 2020). However,
cephalosporins, rather than azithromycin, are the most fre-
quently used in China, which was similar to observations in
Romania (Zaha et al. 2019; Zaha et al. 2020). As a derivative
of erythromycin, azithromycin is a second-generation
macrolide, which is widely used in medical prescriptions be-
cause of its characteristics such as easy absorption, long half-
life, few side effects and broad spectrum of bacteriostatic
(Firth and Prathapan 2020). In the USA, azithromycin was
prescribed more than 12 million times in 2017 alone (Firth
and Prathapan 2020). A recent study reported that the use of
azithromycin as a prescription drug was inappropriate in New
York City emergency departments at 37.8% and primary care
departments at 49.0% (Kiel et al. 2020). In addition,
azithromycin was found to account for the highest proportion
of antibiotic prescriptions during the 2013–2014 and 2014–
2015 influenza seasons, and was more easily prescribed in the
middle-aged and elderly population (Havers et al. 2018) (we
have summarized the use of antibiotics in different countries
in Table S3). Thus, as a prescription drug, azithromycin wide-
ly used in clinical practice and unreasonable use may lead to
antibiotic residues in human bodies. Azithromycin can also
affect gut microbiota composition, reduce gut microbiota bio-
diversity and even alter gut homeostasis (Sylvia et al. 2017;
Wei et al. 2018). In a randomized controlled trial,
azithromycin reduced gut microbiota richness by 23% and
Shannon diversity by 13% over a short duration. Abundance
of the probiotic Bifidobacteriumwas particularly substantially
reduced (Wei et al. 2018). In addition, azithromycin-related
neurological adverse events have been reported in clinical
trials of both children and older adults, although these inci-
dences were low (Cone et al. 2003; Schiff et al. 2010). Thus,
we speculated that azithromycin may affect brain function
through the gut–brain axis, leading to depression-like
behavior.

In the present study, higher concentrations of VAs and
tetracyclines were respectively associated with a 53% and
48% greater risk of depression. VAs are used extensively as
therapeutic drugs or feed additives in modern agriculture. In
recent years, VAs have been detected in meat (Muaz et al.
2018), milk (Kurjogi et al. 2019) and environmental water
samples (Li et al. 2011). Given that the exposure pathways
of antibiotics generally depend on their use, humans, who are
at the top of the food chain, are primarily exposed to VAs

through contaminated food or water. Two 2019 studies
showed that even subtherapeutic concentrations (in the range
of ng/mL) of antibiotics can alter gut bacteria in zebrafish
(Almeida et al. 2019; Schlomann et al. 2019). In addition,
altered gut bacteria composition and function may affect sig-
naling pathways, including neural, endocrine, and immune
pathways, related to the pathogenesis of stress-related diseases
such as depression and potentially contribute to their develop-
ment (Hao et al. 2020; Huang et al. 2019; Wang et al. 2020).
As such, we speculate that a long-time ingestion of VAs from
food chains or drinking water may have an adverse impact on
the pathogenesis of depressive disorder by inducing dysbiosis
of human gut microbiota. The more researches in human are
necessary to test this hypothesis.

Tetracyclines, which are available over the counter in most
countries, are commonly used as an additive in livestock feed
or in veterinary medicine to prevent bacterial infections or
diseases. Tetracycline consumption in China is on the rise,
having been found in surface water (Wei et al. 2011), drinking
water (Liu and Wong 2013), soil, vegetables (Li et al. 2011),
meat, milk, and egg products (Li et al. 2017). Thus, older
adults can be easily exposed to tetracyclines through the food
chain. Experimental studies in mice have revealed that sub-
chronic ingestion of low or therapeutic dosages of doxycy-
cline, a widely used tetracycline, reduces gut microbiota di-
versity and alters gut microbiota composition and function
(Hou et al. 2019). A nested case–control study demonstrated
a link between tetracycline therapy and elevated risk of de-
pression (Lurie et al. 2015). This conclusion is consistent with
our present findings. However, other studies have presented
contradictory findings for some antibiotics. For example, a
substantial increase in aggressiveness rather than depressive
behavior was observed in newborn BALB/c mice exposed to
penicillin for 6 weeks (Leclercq et al. 2017). Such inconsistent
findings may be attributed to the timing of the interventions
and the type of antibiotics administered. Although that exper-
iment did not reveal depression-like behavior, the ability of
antibiotic exposure to induce abnormal behavior is possible
and indicates a potential association between antibiotic expo-
sure and mental disorders.

Disruption of the gut microbiota is a mechanism by which
antibiotics can increase the risk of depression. Evidence from
neuroscience studies supports the premise that the human gut
microbiota modulates brain function or behavior, particularly
in relation to depression, primarily through a two-way com-
munication pathway known as the gut–brain axis (Dinan and
Cryan 2017). Antibiotics have a substantial effect on the com-
position and function of the human gut microbiota (Becattini
et al. 2016; Jahansouz et al. 2019; Reese et al. 2018).
Moreover, our previous animal study revealed that apart from
substantially altering the composition and function of the gut
microbiota, antibiotic exposure induced mental disorders such
as depression and cognitive disorders (Zhang et al. 2017).
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This evidence suggests that low concentrations of antibiotic
residues may alter the gut microbiota of older adults, conse-
quently affecting their mood and increasing their risk of de-
pression. Infancy is a crucial stage for the development of gut
microbiota (Yatsunenko et al. 2012), but at the other extreme
of life, old age is correlated with reduced microbial diversity
(Dinan and Cryan 2017). Evidence has suggested that the core
microbiota in the human gut can change dynamically with
age, particularly in older adults (Claesson et al. 2011; Dinan
and Cryan 2017). Notably, the number of Bifidobacterium
strains decreases with age (Biagi et al. 2016). This may cause
dysbiosis of the gut microbiota in older adults, leading to
increased susceptibility to antibiotic treatment compared with
younger adults and contributing to adverse mental health out-
comes. This indirectly supports our finding that antibiotic ex-
posure increases the risk of depression among older adults.
We speculate that antibiotics induce depression by altering
gut microbiota composition and interfering with the physio-
logical function of the gut–brain axis. However, the exact
mechanism requires further research.

In the present study, we also observed a sex-specific associa-
tion between antibiotic exposure and depression. In men, expo-
sure to sulfaclozine or higher concentrations of VAs was associ-
ated with an increased risk of depression. In women, associations
were observed between higher levels of exposure to all antibi-
otics (including azithromycin, norfloxacin, and tetracyclines) and
depression. Moreover, more significant associations between an-
tibiotic exposure and depression were noted in women than in
men. This finding is consistent with that of a study of sex-specific
differences in associations between antibiotic exposure and risk
of obesity in school children (Wang et al. 2016). Another study
reported a strong sex-specific difference in social behaviors of
individuals under the same antibiotic treatment: the social behav-
iors of women were more affected than were those of men
(Sylvia et al. 2017). A 2020 study suggested that prenatal expo-
sure to a low dose of penicillin causes long-term sex-specific
changes in murine behavior, immune regulation, and gut micro-
biota (Champagne-Jorgensen et al. 2020). Although the mecha-
nisms underlying these sex-specific differences are not well un-
derstood, the gut microbiota is believed to be involved (Jašarević
et al. 2016). Furthermore, antibiotic exposure has sex-specific
effects on the gut microbiota and metabolism of host mice
(Gao et al. 2019).

An age-specific difference was observed in the association
between antibiotic exposure and depression in the study popula-
tion. The most significant associations were noted in the partici-
pants aged 60–70 years. Specifically, in this group, positive cor-
relations between depression and phenicols, VAs, PVAs, and all
antibiotics were identified, whereas exposure to β-lactams (HAs)
was negatively correlated with depression risk. In the participants
aged > 70 years, no significant association between antibiotic
exposure and depression was observed. Older elderly adults
may pay more attention to food quality and safety or medication

use than younger elderly adults, which may explain the lower
intake of food contaminated by antibiotic residues or more pru-
dent antibiotic use among younger elderly adults. Moreover,
younger elderly adults may have a higher intake of animal-
derived food containing residues of VAs and PVAs.

In general, our study reveals that VAs and PVAs from the
environment and diet, as well as clinically used HAs, may have
some connections with the development of psychiatric disorders
in the elderly. However, excessive consumption of antibiotics
leads to antibiotic selection pressure in the environment and the
production of multi-drug resistance in the population, which is
also a problem that we cannot ignore and worry about (Bungau
et al. 2021). Long-term low-dose cumulative exposure and a
high-dose antibiotic administration may be the reasons for the
emergence of drug resistance (Bungau et al. 2021; Dinleyici et al.
2018), but these situations are more common in rural areas of
China. It is worth noting that since our country rarely conducts
laboratory culture and sensitivity testing in medical treatment,
this will greatly reduce the accuracy of antibiotic treatment pro-
grams, resulting in prolonged disease treatment time and unnec-
essary use of antibiotics. Moreover, there is a big gap in the
public awareness of rational drug use, lack of publicity and edu-
cation about the safety of antibiotics and patients’ non-
compliancewithmedical advice and self-medication occurs from
time to time (Chatterjee et al. 2018; Grigoryan et al. 2019). These
have further promoted the development of antibiotic resistance.
Therefore, multi-drug-resistant bacteria pose a danger to public
health and require the government to take measures to regulate,
reform the medical system and strengthen the public’s knowl-
edge of drug use in order to create a healthy environmental
ecology and human ecosystem.

Limitations

This study had some limitations. First, because of its cross-
sectional design, causal relationships between antibiotic expo-
sure and depression could not be determined. Second, antibi-
otic use and residues differ widely by geographical area
(Zhang et al. 2015), but the study population was from one
city in one province of China. Thus, it may not represent
China’s general elderly population. However, the large sam-
ple size we used may support the generalizability of the find-
ings. Finally, the majority of the detected antibiotics were
characterized by relatively short biological half-lives. Thus,
the antibiotic concentrations in spot urine samples may have
varied greatly among participants.

Conclusion

Exposure to some antibiotics, such as sulfaclozine, azithromycin,
tetracyclines and VAs, may increase the risk of depression in
older adults. Sex- and age-specific associations were noted
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between antibiotic exposure and depression, and most of the
significant associations were found in women and participants
aged 60–70 years. Given the cross-sectional design of this study,
further epidemiological and experimental studies are warranted
to explore these associations and their mechanisms, those both
related and unrelated to gut microbiota. Considering that the
incidence of depression is increasing yearly, recognizing the re-
lationship between antibiotics and depression based on the stan-
dard use of antibiotics and identifying effective treatments for
depression are essential tasks.
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