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Abstract
Major depressive disorder is a debilitating disorder affecting millions of people 
each year. Brain-derived neurotrophic factor (BDNF) and inflammation are two 
prominent biologic risk factors in the pathogenesis of depression that have 
received considerable attention. Many clinical and animal studies have 
highlighted associations between low levels of BDNF or high levels of inflam-
matory markers and the development of behavioral symptoms of depression. 
However, less is known about potential interaction between BDNF and inflam-
mation, particularly within the central nervous system. Emerging evidence 
suggests that there is bidirectional regulation between these factors with 
important implications for the development of depressive symptoms and anti-
depressant response. Elevated levels of inflammatory mediators have been shown 
to reduce expression of BDNF, and BDNF may play an important negative 
regulatory role on inflammation within the brain. Understanding this interaction 
more fully within the context of neuropsychiatric disease is important for both 
developing a fuller understanding of biological pathogenesis of depression and 
for identifying novel therapeutic opportunities. Here we review these two 
prominent risk factors for depression with a particular focus on pathogenic 
implications of their interaction.
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Core Tip: Low levels of brain-derived neurotrophic factor (BDNF) and high inflam-
mation have both been implicated as risk factors in the pathogenesis of major 
depressive disorder. Here we review the role BDNF and inflammation play in the 
etiology of depression and the interaction between them. Recent evidence suggests a 
bidirectional connection between these two risk factors: inflammation reduces BDNF 
expression, and BDNF may have a negative regulatory role in resolving neuroinflam-
mation. Understanding of this interaction in the context of neuropsychiatric disease is 
important for a fuller understanding of biological pathogenesis of depression and for 
identifying novel therapeutic opportunities.
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INTRODUCTION
Research has made important advances in recent decades towards the understanding 
and treatment of major depressive disorder, a debilitating disorder with a hetero-
geneous range of symptoms. Despite these advancements, depression remains a 
leading cause of disability with an estimated 264 million individuals worldwide 
affected by the disorder[1]. In the United States, the economic burden of major 
depressive disorder is an estimated 210.5 billion dollar[2] with substantial lost 
productivity and diminished quality of life for affected patients and their families. 
Recent interest has turned to biomarker and genetic analysis to predict those who may 
be vulnerable to developing depression and to understand the etiology of patients’ 
existing diagnosis in order to better prevent and treat this debilitating disorder. Two 
notable biological risk factors for depression are of particular interest: A deficiency in 
brain-derived neurotrophic factor (BDNF) and inflammation. In this review, we will 
highlight the mechanisms by which these factors are known to contribute to the 
development of depression and summarize emerging evidence suggesting that 
interactions between these two factors within the brain are important in the 
pathogenesis of depression.

BRAIN DERIVED NEUROTROPHIC FACTOR
BDNF, a member of the neurotrophin family of growth factors, has been well-studied 
for its role in the pathogenesis of major depressive disorder and antidepressant 
efficacy. BDNF is a small protein expressed by the bdnf gene on chromosome 11 in 
humans[3]. Transcription of the bdnf gene is controlled by nine distinct promoters. The 
bdnf gene contains up to 11 exons; exons II, III, IV, and VII are brain-specific[4]. BDNF 
is first synthesized as the precursor pre-proBDNF in the endoplasmic reticulum. The 
pre- domain is cleaved off and proBDNF is transported to the Golgi apparatus. 
ProBDNF may be secreted in the precursor form or proteolytically cleaved intracel-
lularly or extracellularly to form mature BDNF (mBDNF)[5,6]. Both pro- and mature 
forms of the BDNF protein are neuroactive, though the activity of proBDNF and 
mBDNF have largely opposite effects. ProBDNF binds and activates the pan-
neurotrophin receptor p75NTR, a member of the tumor necrosis factor receptor family, 
promoting apoptosis[7]. mBDNF binds with high affinity to the tyrosine kinase 
receptor tropomycin receptor kinase B (TrkB).

When mature BDNF, or neurotrophins with lesser affinity for TrkB including 
neurotrophin-4 and neurotrophin-3, bind to the extracellular domain of TrkB, the 
intracellular domains of the receptor dimerize and autophosphorylate one of three 
tyrosine residues. Phosphorylation at each residue initiates a distinct signaling 
cascade: Ras-PI3K-Akt, Ras-MAP kinase-Erk, or phospholipase Cγ[8]. These signaling 
cascades activate transcription factors such as CREB, resulting in cell proliferation, cell 
survival, synaptogenesis, and memory formation (Figure 1).
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Figure 1 Brain-derived neurotrophic factor signaling cascade diagram. When TrkB is activated by binding mature brain-derived neurotrophic factor 
(BDNF), the intracellular domains of the receptor dimerize and autophosphorylate one of three tyrosine residues. Phosphorylation at each residue initiates a distinct 
signaling cascade: Ras-PI3K-Akt, Ras-MAP kinase-Erk, or phospholipase Cγ. These signaling cascades activate transcription factor CREB, resulting in cell 
proliferation, cell survival, synaptogenesis, and memory formation. ProBDNF binds to pan-neurotrophin receptor P75NTR. P75NTR signaling activates transcription 
factor NFκB, leading to inflammation and apoptosis. BDNF: Brain-derived neurotrophic factor.

BDNF and TrkB are expressed both peripherally and within the central nervous 
system. In the periphery, BDNF has been detected in the heart and spleen[9], 
expressed by myoblasts[10], dorsal root ganglion cells[11], vascular endothelial cells
[12], leukocytes[13] and is stored in platelets[14]. In the brain, BDNF is expressed by 
neurons, astrocytes[15], and microglia[16]. BDNF is highly expressed in the 
hippocampus and is found in lower concentrations in the cerebral cortex and 
brainstem[17]. TrkB is expressed in neurons, microglia, and astrocytes throughout the 
brain[18,19].

A number of factors may modulate BDNF expression or function. Prenatal, early 
life, social, and unpredictable stress are all associated with reduced BDNF expression 
or protein levels[20]. Exercise increases BDNF expression[21] and environmental 
enrichment protects against the effects of stress and early life inflammation on BDNF 
expression[22,23]. BDNF levels may also decline with age[24,25] and low BDNF levels 
are associated with age-related neurodegenerative disorders such as Alzheimer’s and 
Parkinson’s disease[26,27]. However, some studies suggest BDNF expression does not 
change with age[28,29].

While a number of genetic factors may contribute to a reduction of BDNF 
expression or function[30-33], the val66met mutation has garnered considerable 
attention due to its relevance in psychiatric conditions like bi-polar disorder and 
suicidality[34,35]. The single nucleotide polymorphism (SNP; rs6265) at nucleotide 196 
(G/A) occurs on the 5’ pro-BDNF sequence, producing a valine to methionine substi-
tution within codon 66. This SNP does not appear to alter BDNF expression or 
biological activity, but impairs translocation and activity-dependent secretion[36], thus 
reducing BDNF- TrkB signaling. The val66met SNP is also associated with reduced 
serum BDNF protein levels in the periphery[37].
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BDNF IN DEPRESSION
The negative correlation between BDNF levels and symptoms of depression have been 
well established; researchers have been interested in BDNF as a biomarker for 
depression for decades[38-40]. Clinical data has often demonstrated that patients 
suffering from major depression disorder are more likely to have alterations in their 
BDNF-TrkB signaling activity. Numerous studies have found that depressed or 
suicidal patients have lower BDNF levels than healthy controls[41-48]. Keller et al[30] 
found that suicide victims were more likely to have DNA methylation in the BDNF 
promotor/exon IV compared to control subjects, suggesting a link between epigenetic 
down-regulation of BDNF and suicidal behavior. Further, psychosocial stress, a 
known precursor to depression and anxiety, reduces BDNF levels[20].

Genetic analysis reveals several polymorphisms that are associated with suscept-
ibility to developing depression or suicide, such as rs12273363, rs7124442, rs10767664, 
rs962369, rs908867[31,33]. Of these polymorphisms, the rs6265 SNP known as 
val66met has been most extensively studied in psychiatric conditions. Some studies 
suggest that individuals carrying the val66met polymorphism are more vulnerable to 
developing depression[37,49-52], suicidality[53,54], or to be nonresponsive to antide-
pressant treatment[55]. However, others dispute this association[55-60]. The val66met 
polymorphism has been linked to depression in breast cancer patients/survivors[61,
62], but also appears to be protective against chemotherapy-associated cognitive 
impairments in breast cancer patients[63]. The mixed findings pertaining to association 
between the val66met SNP and psychiatric disorders suggest that the mutation alone 
is likely not sufficient to cause pathology. Rather it is a risk factor that interacts with 
other genetic or environmental factors to contribute to pathogenesis of depression or 
depressive symptoms.

Clinical studies investigating BDNF have been limited to measuring BDNF in the 
blood or cerebral spinal fluid, direct measurement of mRNA or protein in the brain 
being only available in post-mortem tissue samples. However, BDNF does cross the 
blood-brain barrier (BBB)[64], and Karege et al[65] found that brain and serum levels of 
BDNF are positively correlated in rats. For this reason, measuring peripheral BDNF 
levels are a feasible indicator of central BDNF expression. Moreover, there is a 
negative correlation between serum BDNF stored in platelets and depression in 
humans[66]. BDNF release from platelets may be impaired in depressed patients[67] 
while antidepressants increase BDNF release from platelets[68], suggesting platelet-
derived BDNF is a contributing factor to the interaction between peripheral BDNF 
levels and depression.

Recent preclinical studies revealed that mice heterozygous for the BDNF allele, 
which reduces BDNF levels within the brain by about half[69], are susceptible to 
depressive-like phenotypes after a challenge such as mild stress or acute inflammation
[70,71,201]. Direct infusion of BDNF into the rodent brain[72,73] and periphery[74] is 
protective against the behavioral consequences of stress in the forced swim test and 
learned helplessness models of depressive-like despair behavior. Further, manipu-
lation of the BDNF-TrkB signaling activity through TrkB agonist 7,8-dihydroxyflavone 
(DHF)[75] reduces depressive-like behavioral changes induced by social defeat stress
[76] and acute inflammation[77]. Many antidepressant treatments increase levels of 
circulating BDNF[46,68,78-84]. In the brain, anti-depressant treatment induces BDNF 
mRNA expression in neurons[85], astrocytes[86-88], and microglia[88]. Up-regulation 
of BDNF may be necessary for the anti-depressant response[89-93].

INFLAMMATION IN THE PERIPHERY AND THE BRAIN
As suggested above, dysregulation in the BDNF-TrkB system may not be a patholo-
gical factor that acts alone, rather perturbation within this neurotrophic factor 
expression/signaling may engender a foundation of vulnerability to subsequent 
insults to increase the risk of depression or lead to pathology (Figure 2). Inflammation 
is one risk factor that may well fit this profile.

The ancient Roman encyclopedist Celcus defined inflammation by the presence of 
“rubor, calor, dolor, tumor”, or redness, heat, pain, and swelling. Modern scientists 
have a deeper understanding of inflammation as a consequence of the innate immune 
system’s activation in response to an irritant or loss of homeostatic control due to 
factors such as stress, obesity, and aging. Acute inflammation occurs when a tissue 
injury, pathogen, or noxious stimuli is detected. Leukocytes travel to the impacted 
region to remove the stimuli and repair damage. Chronic inflammation is a persistent 
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Figure 2 Hypothesis diagram. Brain-derived neurotrophic factor (BDNF) deficiency and elevated or chronic neuroinflammation independently confer vulnerability 
to development of major depressive disorder. BDNF plays a negative regulatory role in resolving neuroinflammation, and high inflammation reduces BDNF 
expression. BDNF: Brain-derived neurotrophic factor. BDNF: Brain-derived neurotrophic factor.

and maladaptive response that can be caused by many factors, such as chronic somatic 
diseases, advancing age, obesity, smoking, and high fat diets. In addition to 
contributing directly to risk of depression, chronic inflammation may lead to chronic 
illnesses such as allergies, arthritis, and autoimmune disease that also have high 
comorbidity with depression.

Invading pathogens or signals released by damaged cells are detected by toll-like 
receptors (TLR) in the plasma membrane of innate immune cells. TLRs are classified as 
pattern recognition receptors (PRRs). PRRs recognize and bind pathogen-associated 
molecular patterns (PAMPs)[94], such as lipopolysaccharide (LPS) on the gram-
negative bacterial cell wall, or damage-associated molecular patterns (DAMPs) in a 
pathogen-independent process known as “sterile inflammation”. Activation of TLRs 
initiate an intracellular signaling cascade, activating the transcription factor NFκB, 
causing up-regulation of pro-inflammatory mediators including cytokines, 
chemokines, cellular adhesion molecules[95], and downstream induction of reactive 
oxygen species[96]. Of these mediators, macrophage-derived TNFα, IL-1β, IL-6, and 
IL-10 have received extensive attention due their roles in regulating the immune 
system and their effects on the body[97].

Inflammation as a function of the immune response is necessary to protect the life of 
the organism. Recently, intentional induction of inflammation has been wielded as a 
promising tool against cancer as immunotherapy[98]. However, numerous studies 
have shown prolonged and elevated immune activation has significant impacts on 
physiological, metabolic, and neural/behavioral processes. The effects of peripheral 
inflammation or immune challenge do not remain in the periphery; inflammatory 
conditions impact the CNS through several possible mechanisms. The BBB created by 
the tight junctions of brain endothelium restricts diffusion of pathogens and non-select 
solutes from the blood into the brain. Peripheral inflammation may disrupt this 
boundary, increasing the permeability of the BBB and allowing infiltration by 
circulating monocytes, cytokines, and other substances[99,100]. Cytokines and 
monocytes attracted by the expression of chemokines such as monocyte chemoat-
tractant protein 1 will travel to the brain and enter through leaky regions of the BBB or 
through active transport systems. Peripheral cytokines, PAMPs, and DAMPs can also 
impact brain homeostasis by signaling through the vagus nerve[101] or by signaling 
through PRRs on the BBB endothelial cells[102,103]. These inflammatory signaling 
pathways across the BBB initiate the neuroinflammatory response within the brain.

Numerous animal studies have demonstrated that microglia, the resident immune 
cell in the brain, adopt an “activated” phenotype following peripheral inflammation 
induced by LPS and live or heat-killed pathogens[100]. In their resting state, microglia 
are “ramified” with small somas and long highly branched processes. Once microglia 
detect an immune challenge, their morphology shifts toward an “amoeboid” shape 
with enlarged soma and shorter, thicker processes. Microglia are the primary source 
for brain-borne cytokines and other inflammatory mediators.

In addition to producing cytokines, inflammatory microglia also synthesize 
metabolites of the tryptophan-kynurenine pathway associated with oxidative stress. 
Tryptophan is converted to kynurenine by the enzyme indolamine-2,3 dioxygenase. 
Kynurenine metabolism then splits into distinct branches: Kyurenic acid, a metabolite 
with NMDA receptor antagonist activity, is produced in astrocytes by the enzyme 
kynurenine aminotransferase, while the enzyme kynurenine monooxygenase (KMO) 
produces 3-hydroxykynurenine (3-HK) in microglia (Figure 3). 3-HK is further 
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Figure 3 Inflammation shifts kynurenine metabolism pathway towards oxidative stress-associated metabolites. The enzyme indolamine-2,3-
dioxygenase (IDO) converts tryptophan to kynurenine. Kynurenine aminotransferase converts kynurenine to kynureninic acid in astrocytes while kynurenine 
monooxygenase (KMO) metabolizes kynurenine to 3-hyroxykynurenine (3-HK) in microglia. 3-HK is metabolized by kynureninase to 3-hydroxyanthranilic acid and 3-
hydroxyanthranilic acid dioxygenase to quinolinic acid. Inflammation up-regulates the enzymes IDO and KMO, resulting in increased levels of KMO-dependent 
metabolites associated with oxidative stress and depression. IDO: Indolamine-2,3-dioxygenase; KAT: Kynurenine aminotransferase; KMO: Kynurenine 
monooxygenase; 3-HK: 3-hyroxykynurenine; KYNU: Kynureninase; HAAO: 3-hydroxyanthranilic acid dioxygenase; QA: Quinolinic acid.

metabolized by the enzyme 3-hydroxyanthranilate 3,4-dioxygenase (HAAO) into the 
neuroactive NMDA receptor agonist quinolinic acid (QA). 3-HK and QA are also free 
radical inducers and are necessary for the development of inflammation-induced 
development of depressive-like phenotypes[104], described below.

NEUROINFLAMMATION IN DEPRESSION
Symptoms of typical “sickness behaviors” which cease upon recovery – fatigue, loss of 
appetite, pain sensitivity, anhedonia, cognitive deficits, social withdrawal – have 
significant overlap with symptoms of major depressive disorder[105]. In fact, a subset 
of patients with chronic inflammatory diseases will suffer from longer-lasting 
symptoms of depression[106]. Individuals suffering from depression but who are 
otherwise medically healthy often have higher baseline levels of circulating pro-
inflammatory mediators, particularly TNFα and IL-6[82,107-110]. Some anti-
depressant treatments may reduce neuroinflammation[111,112], but most studies 
suggest that conventional antidepressants have reduced efficacy in depressed patients 
who have high inflammation. Conversely, while direct TNFα inhibition was ineffective 
as an anti-depressant in treatment resistant depression patients with low-moderate 
CRP levels, it was quite effective in treatment resistant patients with high inflam-
mation[113]. This finding underscores the notion that anti-depressant treatment 
decisions and efficacy may be improved by integrating understanding of a patient’s 
inflammatory status. At the cellular/molecular level, post-mortem studies indicate 
that microglia density in the dorsolateral prefrontal cortex, anterior cingulate cortex, 
and mediodorsal thalamus[114,115], expression levels of IL-1β, IL-6, and TNFα in the 
prefrontal cortex[116,117] and blood[118], and production of QA in the ACC[119] is 
significantly higher in suicide victims compared to non-suicide controls. Further, anti-
depressants with secondary anti-inflammatory properties are more effective in 
treatment-resistant patients with high baseline levels of inflammatory markers IL-6 
and C-reactive protein[120]. These studies suggest a strong association between 
inflammation and the development of depression.
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Inflammation on its own may be sufficient to promote the development of 
depressive symptoms. Subsets of patients report feelings of depression following 
cytokine treatment for hepatitis or cancer[121,122]. Experimental treatment with 
endotoxin[123] or Salmonella typhi vaccine in healthy subjects similarly induced 
symptoms of depression and anxiety alongside acute inflammation[124] and increased 
kynurenine pathway metabolism. Numerous rodent studies have likewise demons-
trated that inflammation can induce depressive-like phenotypes[125].

Inflammation can arise from multiple sources and events. In humans and rodents, 
acute and chronic stress is known to promote activation of the innate immune system
[126,127] and induce microglial activation[115,128]. Psychological stress, a frequent 
trigger for depression and suicidality in humans, is commonly modeled in rodents 
using acute or chronic stressors such as social defeat, restraint, or home cage 
disruption. You et al[129] found that rats exposed to chronic mild stress have elevated 
central and peripheral pro-inflammatory cytokines, reduced neurogenesis in the 
hippocampus, and display anhedonia-like behavior as measured by the sucrose 
preference test. Hodes et al[109] found that mice with higher baseline levels of 
circulating IL-6 are more susceptible to developing depressive-like behavioral 
phenotypes after chronic social stress; IL-6-/- mice were resilient to the effects of social 
stress. Aging similarly increases vulnerability to neuroinflammation and subsequent 
depressive-like behaviors. Peripheral LPS treatment promotes a more robust inflam-
matory responses and sickness behavior in aged mice compared to young adults[130,
131]. Culley et al[132] found that LPS increases pro-inflammatory cytokine expression 
in the prefrontal cortex and impairments in prefrontal cortex-dependent cognition in 
aged rats. Inflammation associated with obesity[133] and alcohol consumption[134] 
have similarly been shown to induce depressive symptoms and behaviors in humans 
and animals.

Researchers have extensively studied depressive-like behavioral changes induced 
by peripheral immune challenge in rodents[125]. The viral mimetic Poly:IC, attenuated 
bacterial strain Bacillus Calmette-Guerin (BCG), and LPS are common models used to 
induce chronic or acute innate immune activation in animal models. Poly:IC increases 
expression of IL-1β, TNFα, and CD11b and elevates kynurenine levels in the rat brain, 
followed by a reduction in saccharin preference up to 72 h after treatment[135]. BCG 
inoculation induces chronic inflammation, up-regulates TNFα, INFy, and the 
tryptophan-kynurenine enzymes IDO and HAAO, and drives despair-like behavior 
measured by immobility in forced swim test and tail suspension test one week after 
infection[136,137]. LPS treatment models acute inflammation: Pro-inflammatory 
cytokine up-regulation and sickness behaviors resolve within 24 h after adminis-
tration. Once motor activity and food intake is restored at 24 h, mice continue to 
display anhedonia-like, despair-like, and anxiety-like behavior[131,138,139]. Anti-
inflammatory compounds ameliorate the depressive-like behaviors after LPS[138,140-
144]. Moreover, many of these effects appear to be dependent on neurotoxic kynure-
nine metabolism. Inhibition of, or targeted deletion of, the gene for the rate-limiting 
enzyme IDO prevents development of LPS- and BCG-induced depressive-like 
behaviors, despite the elevation of pro-inflammatory cytokines[136,145,146]. KMO-/- 
and HAAO-/- mice are likewise are protected against many of the depressive-like 
behavioral effects of LPS, while direct administration of 3-HK provokes immobility in 
the tail suspension test and hippocampal-dependent cognitive impairment in the y-
maze without an increase in pro-inflammatory cytokines[147], suggesting a causative 
role of downstream metabolites 3-HK and QA.

However, of the total human population that is exposed to high levels of inflam-
mation, only a relatively small subset goes on to develop symptoms of major 
depressive disorder. For this reason, researchers have lately turned to investigating the 
environmental and genetic risk factors that contribute to a patient’s vulnerability to 
developing depression. Recent research has revealed a role for BDNF in modulating 
the effects of neuroinflammation in a psychiatric context. A deficiency in BDNF may 
prime the system to develop neuropsychiatric symptoms in a maladaptive response to 
neuroinflammation-induced sickness behavior (Figure 2).

PATHOGENIC TUG OF WAR?
Mounting evidence has revealed negative correlations between BDNF and neuroin-
flammation, particularly in psychiatric populations[148,149]. Depression is frequently 
comorbid with chronic inflammatory conditions, and BDNF deficiency has been 
identified as a risk factor. Breast cancer survivors are more likely to suffer from inflam-
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mation-associated depression if they carry the Met allele in the val66met SNP[62]. 
BDNF expression is reduced in animals models and patients with rheumatoid arthritis, 
a disease characterized by chronic inflammation, and associated with major depressive 
disorders[150]. In Hepatitis C patients undergoing IFNα therapy, elevated cytokine 
levels are predictive of lower BDNF levels, and both BDNF and cytokine expression 
are associated with depressive symptoms[151]. Uint et al[152] found that elevated 
levels of both IL-1β and BDNF were predictive of treatment-resistant depression, but 
posited that this relationship may be due to the patients’ long-term use of anti-
depressant medications buoying their BDNF levels. Treating rats with viral mimetic 
Poly:IC increases expression of IL-1β, TNFα, IL-6, and CD11b and decreases BDNF and 
TrkB in the frontal cortex and hippocampus and reduces saccharin preference 
(anhedonia-like behavior)[135].

Numerous anti-inflammatory treatments have shown promising effects in allevi-
ating depressive-like symptoms and increasing BDNF. Clinically, zinc monotherapy 
decreases depressive symptoms and increases BDNF in obese subjects[153]. In pre-
clinical studies, insulin-like growth factor-1[81] and drugs such as resveratrol[140,
154], imipramine[89,144], doxycycline[144], fluoxetine[155], etazolate[156], chaihu-
shugan-san[157], dihydromyricetin[158], minocycline[159], ketamine[160], and caffeine
[161] all inhibit inflammation, increase BDNF, and improve depressive-like behavioral 
phenotypes.

BDNF activity likewise appears to impact stress or inflammation-induced 
depression. Mice with genetically reduced baseline levels of BDNF (BDNF+/- mice) 
develop an exaggerated neuroinflammatory and anhedonia-like response to 
peripheral LPS challenge compared to wild-type controls[201] and increased despair-
like behavior in the forced swim test after acute mild stress[71]. Both the TrkB agonist 
DHF and the TrkB antagonist ANA-12 are anti-depressant in mice treated with LPS, 
likely due to opposing effects of BDNF-TrkB activity between the hippocampus and 
nucleus accumbens[77]. INFα therapy patients with the Val66Met polymorphism 
display symptoms of suicidal ideation and depression compared to those with the Val 
allele[162]. Mice with the humanized val66met polymorphism (Val/Met mice) are 
more sensitive to LPS-induced depressive-like behaviors than Val/Val mice and 
exhibit microglia with an already primed morphology (unpublished data).

Additionally, investigating the interaction between BDNF-TrkB system and inflam-
mation may be relevant for addressing the sex differences in the presentation of 
depression. Women report experiencing depression at up to twice the rate of men. 
BDNF is expressed differentially in various regions of the CNS between males and 
females and environmental conditions modulate BDNF expression differentially 
between males and females, although circulating levels of peripheral BDNF appear 
consistent between sexes[163]. Female BDNF conditional KO mice display more 
depressive-like behaviors and attenuated anti-depressant response than male BDNF 
conditional KO mice[164]. Women may also be more vulnerable to developing inflam-
mation-induced depression. Females tend to have higher baseline levels of inflam-
mation than males[165] and have a larger pro-inflammatory and depressive response 
to endotoxin exposure[166]. In the brain, while male microglia appear to be more 
reactive early in life than female microglia, female microglia may be reactive and 
inflammatory later in life, when neuropsychiatric disorders tend to manifest[167]. 
Estrogen may also play a role: Rodent models of estrogen deficiency results in 
increased depressive-like behaviors, pro-inflammatory cytokine expression, and 
increased levels of kynurenine pathway enzyme IDO in the hippocampus[168]. There 
is also evidence that estrogen regulates expression of BDNF and that the estrogen 
receptor may be necessary for the protective effects of TrkB activation[163]. These 
findings suggest the relationship between BDNF, inflammation, and sex warrants 
further investigation.

BDNF AND NEUROINFLAMMATION: BI-DIRECTIONAL MODULATION
Mounting evidence suggests that the connection between BDNF expression and 
neuroinflammation regulation is bi-directional in nature (Figure 2). Interestingly, 
Gomes et al[169] found in vitro that microglia acutely increase extracellular secretion of 
BDNF in response to LPS, leading to reduced intracellular levels of BDNF. Cultured 
human monocyte cells constitutively secrete BDNF, and BDNF secretion is increased 
when monocytes are stimulated by TNFα or IL-6, although no change in BDNF mRNA 
was detected[170]. Astrocytes likewise express BDNF when stimulated by TNFα[15] 
and increase expression of BDNF, TNFα, and IL-6 after LPS treatment[171]. BDNF 
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regulates proliferation and survival of microglia[172]. This acutely elevated BDNF 
secretion may be necessary for microglia proliferation and activation after immune 
challenge[173].

Alternatively, increased BDNF secretion may be a means of inhibitory feedback, as 
BDNF dampens microglial activation. In spinal cord injury, locally applied BDNF 
reduces microglial density and inhibits free radical production around injury site
[174]. Exogenous BDNF infusion dampens microglial activation by LPS in the 
substantia nigra in aged mice[175]. In a mouse model of Type I diabetes, overex-
pressing BDNF in the hippocampus suppressed microglial activation and expression 
of TNFα and IL-6 induced by hyperglycemia[176]. Further, hypermethylation of BDNF 
is associated with higher levels of serum IL-6 in patients with acute coronary 
syndrome[177]. Exogenous BDNF administration significantly decreases TNFα and 
increases expression of the anti-inflammatory cytokine IL-10 in rodent models of 
stroke, multiple sclerosis, and pneumococcal meningitis[178-181]. Along this line, 
BDNF+/- mice have reduced expression of IL-10 and kynurenic acid levels while 3-HK 
is increased in the brain compared to wild-type controls following chronic mild stress
[182]. After LPS treatment, BDNF+/- mice have increased expression of pro-inflam-
matory cytokines IL-1β and TNFα and elevated levels of kynurenine and QA[201]. 
Reduced BDNF after viral mimetic poly:IC treatment is likewise accompanied by a 
shift in the tryptophan/kynurenine ratio[135]. In vitro studies in BV2 microglia by 
Park et al[183] have demonstrated that TrkB activation by the agonist DHF inhibits 
production of nitric oxide, TNFα, and IL-1β, and translocation and transcriptional 
activity of NFκB. These data suggest a role for BDNF-TrkB activity in modulating and 
resolving the neuroinflammatory response to immune challenge with implications for 
the development of the depressive-like behavioral phenotypes (Figure 4).

While BDNF secretion may be acutely increased after immune challenge, long-term 
BDNF expression is hindered in an inflammatory environment. Patients undergoing 
INFα treatment have significantly reduced BDNF levels[151,162], and Lotrich et al[162] 
found this effect was largest in those with the Val66Met genotype. In rodents, BDNF 
mRNA is significantly reduced after peripheral injection of LPS in the hippocampus
[184,185], substantia nigra[186], and in the whole brain[161]. Similarly, poly I:C also 
reduces BDNF expression in the brain[135] and E. coli treatment down-regulated 
BDNF and reduced levels of phosphorylated TrkB receptors in the hippocampus of 
aged animals[187].

Down-regulation of BDNF may be driven by the pro-inflammatory cytokines IL-1β. 
In vitro experiments have shown that IL-1β treatment inhibits the neuroprotective 
effects of BDNF through the PI3-K and MAPK pathways and activity of the CREB 
transcription factor[188]. In rodents, exogenous IL-1β treatment blocks BDNF 
expression in the hippocampus[189-191], and while BDNF expression was not directly 
measured, chronic inflammation induced by BCG reduces neurogenesis[192] which is 
a BDNF-TrkB dependent process and correlate of anti-depressant efficacy.

THERAPEUTIC IMPLICATIONS
BDNF as a treatment target for inflammation-associated depression has its challenges. 
While BDNF and TrkB ligands do cross the b BBB[64,193], BDNF has opposing effects 
in different cell types and brain regions. For example, LPS treatment down-regulates 
BDNF in the hippocampus but up-regulates BDNF in the nucleus accumbens[77]. 
BDNF and TrkB agonists have anti-depressant-like effects in the hippocampus, but 
pro-depressive-like effects in the nucleus accumbens; inhibiting TrkB activation is anti-
depressant in the nucleus accumbens[77]. Further, peripheral infusion of BDNF 
induces hyperalgesia[194] which, together with differential regionally-distinct CNS 
effects, precludes the therapeutic utility of systemic BDNF infusion and flooding the 
CNS with BDNF or TrkB ligands. However, intranasal ketamine, which was recently 
approved for anti-depressant use, activates BDNF-TrkB signaling directly in the brain, 
suggesting that therapeutic strategies that deliver BDNF-TrkB modulators directly to 
target regions within the CNS could prove efficacious.

Peripheral levels of BDNF and inflammatory markers may be useful as biomarkers 
for treatment-resistant depression, although this approach also is not without 
challenge. An ideal biomarker of risk or diagnosis should be reliably sensitive to 
predicting the disease in an asymptomatic individual and be specific to the disorder in 
question with little to no overlap with other diseases[195]. While low BDNF and high 
inflammation markers are frequently measured together in depressed individuals, 
there are many individuals who meet criteria but report no symptoms of depression, 
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Figure 4 Brain-derived neurotrophic factor deficiency impairs resolution of microglial inflammatory phenotypes. Brain-derived neurotrophic 
factor (BDNF) levels are altered by genetics and environmental circumstances. Reduced levels of BDNF impair microglia regulation after inflammation. Hyper-active 
microglia contribute to blood-brain barrier disruption and express higher levels of pro-inflammatory cytokines and kynurenine metabolism pathway enzymes. 
Individuals with hyper-active microglia are vulnerable to developing symptoms of depression after inflammatory challenge. BDNF: Brain-derived neurotrophic factor.

or become depressed without diverging from average serum levels of each marker. 
Additionally, low peripheral BDNF and elevated inflammatory markers are reported 
in other neurodegenerative or neuropsychiatric disorders, including Parkinson’s 
disease, bi-polar disorder, and schizophrenia[196-198]. Epigenetic patterns that disrupt 
inflammatory homeostasis or functional immunoreactivity of circulating immune cells 
may provide better prognostic value in predicting vulnerability.

Despite the obstacles, the association between BDNF and inflammation may have 
utility in deciding treatment options for depressed patients. Patients with inflam-
mation and dysregulation of their BDNF-TrkB system may respond better to anti-
depressant drugs with known anti-inflammatory properties, or anti-inflammatory 
drugs that incidentally have anti-depressant actions, and are able to elevate BDNF 
levels. Further mechanistic investigations of the interaction between BDNF expression 
and secretion and pro-inflammatory microglial responses may illuminate potentials 
targets for novel anti-depressant medication. One emerging approach that has yielded 
positive results in neurodegenerative disease is to use genetically modified 
hematopoietic stem cells that express growth factor and traffic specifically to the areas 
of the brain where pathology occurs[199,200]. While this approach has not yet been 
tested, it could be viable in cases of severe treatment-resistant depression.

CONCLUSION
Researchers have long recognized BDNF and neuroinflammation as key players in the 
development of neuropsychiatric conditions, notably major depressive disorder. 
Recent research has uncovered bi-directional modulation between these two risk 
factors in the development of depression with promising implications for predicting 
vulnerability to and treatment of depression. Future studies exploring the mechanisms 
of BDNF modulation by inflammatory signals, and the anti-inflammatory effects of 
BDNF in the brain, will provide greater insight into the complex pathogenesis of 
depression and other neuropsychiatric disorders.
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